Appendix A
 Notation

Scalars, Vectors, and Matrices

Scalars Scalars are denoted by plain (not boldface) characters, such as x, a, i, μ.
Vectors Vectors are denoted by boldface characters, so, for example, $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Matrices Matrices are denoted by boldface uppercase characters, such as $\mathbf{A}=\left[a_{i j}\right]$
where $a_{i j}$ denotes the element in the $i^{\text {th }}$ row and $j^{\text {th }}$ column of \mathbf{A}. The $i^{\text {th }}$ row of a matrix \mathbf{A} is denoted \mathbf{A}^{i}, and the $j^{\text {th }}$ column is denoted $\mathbf{A}_{\boldsymbol{j}}$.
Inner products The inner product of two vectors \mathbf{x} and \mathbf{y} is denoted $\mathbf{x}^{\top} \mathbf{y}$ and is defined by

$$
\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

The inner product of a matrix \mathbf{A} and a vector \mathbf{x} is denoted $\mathbf{A}^{\top} \mathbf{x}$ and is defined as the vector

$$
\mathbf{A}^{\top} \mathbf{x}=\left(\mathbf{A}^{1^{\top}} \mathbf{x}, \mathbf{A}^{2^{\top}} \mathbf{x}, \ldots, \mathbf{A}^{n \top} \mathbf{x}\right) .
$$

The following is a list of variables along with a description of their typical meanings throughout the text.

Roman Variables

A Incidence matrix for a network model $\mathbf{A}=\left[a_{i j}\right]$, where $a_{i j}=1$ if resource i is used by product j and $a_{i j}=0$ otherwise; m rows, n columns.
\mathbf{A}^{i} The $i^{\text {th }}$ row of the incidence matrix \mathbf{A}.
A^{i} The set of products that use resource i.
\mathbf{A}_{j} The $j^{\text {th }}$ column of the incidence matrix \mathbf{A}. Also used to denote the set of resources used by product j.
A_{j} The set of resources used by product j.
$B_{j}(y, D)$ The $j^{\text {th }}$ "fill event."
b_{j} Booking limit or nested booking limit.

