Appendix A Notation

Scalars, Vectors, and Matrices

Scalars Scalars are denoted by plain (not boldface) characters, such as x, a, i, μ .

Vectors Vectors are denoted by boldface characters, so, for example, $\mathbf{x} = (x_1, x_2, \dots, x_n)$.

Matrices Matrices are denoted by boldface uppercase characters, such as $\mathbf{A} = [a_{ij}]$ where a_{ij} denotes the element in the i^{th} row and j^{th} column of \mathbf{A} . The i^{th} row of a matrix \mathbf{A} is denoted \mathbf{A}^i , and the j^{th} column is denoted \mathbf{A}_j .

Inner products The inner product of two vectors \mathbf{x} and \mathbf{y} is denoted $\mathbf{x}^{\mathsf{T}}\mathbf{y}$ and is defined by

$$\mathbf{x}^{\top}\mathbf{y} = \sum_{i=1}^{n} x_i y_i.$$

The inner product of a matrix A and a vector x is denoted A^Tx and is defined as the vector

 $\mathbf{A}^{\mathsf{T}}\mathbf{x} = (\mathbf{A}^{\mathsf{1}^{\mathsf{T}}}\mathbf{x}, \mathbf{A}^{\mathsf{2}^{\mathsf{T}}}\mathbf{x}, \dots, \mathbf{A}^{\mathsf{n}^{\mathsf{T}}}\mathbf{x}).$

The following is a list of variables along with a description of their typical meanings throughout the text.

Roman Variables

A Incidence matrix for a network model $\mathbf{A} = [a_{ij}]$, where $a_{ij} = 1$ if resource i is used by product j and $a_{ij} = 0$ otherwise; m rows, n columns.

 A^i The i^{th} row of the incidence matrix A.

 A^{i} The set of products that use resource i.

 \mathbf{A}_{j} The j^{th} column of the incidence matrix \mathbf{A} . Also used to denote the set of resources used by product j.

 A_j The set of resources used by product j.

 $B_j(y, D)$ The j^{th} "fill event."

 b_j Booking limit or nested booking limit.